VOIP
What is VOIP?
Voice over Internet Protocol (also voice over IP, VoIP or IP telephony) is a methodology and group of technologies for the delivery of voice communications and multimedia sessions over Internet Protocol (IP) networks, such as the Internet. The terms Internet telephony, broadband telephony, and broadband phone service specifically refer to the provisioning of communications services (voice, fax, SMS, voice-messaging) over the public Internet, rather than via the public switched telephone network (PSTN).
The steps and principles involved in originating VoIP telephone calls are similar to traditional digital telephony and involve signaling, channel setup, digitization of the analog voice signals, and encoding. Instead of being transmitted over a circuit-switched network, the digital information is packetized, and transmission occurs as IP packets over a packet-switched network. They transport media streams using special media delivery protocols that encode audio and video with audio codecs, and video codecs. Various codecs exist that optimize the media stream based on application requirements and network bandwidth; some implementations rely on narrowband and compressed speech, while others support high-fidelity stereo codecs. Some popular codecs include μ-law and a-law versions of G.711, G.722, an open source voice codec known as iLBC, a codec that uses only 8 kbit/s each way called G.729, and many others.
Early providers of voice-over-IP services offered business models and technical solutions that mirrored the architecture of the legacy telephone network. Second-generation providers, such as Skype, built closed networks for private user bases, offering the benefit of free calls and convenience while potentially charging for access to other communication networks, such as the PSTN. This limited the freedom of users to mix-and-match third-party hardware and software. Third-generation providers, such as Google Talk, adopted the concept of federated VoIP—which is a departure from the architecture of the legacy networks. These solutions typically allow dynamic interconnection between users on any two domains on the Internet when a user wishes to place a call.
In addition to VoIP phones, VoIP is also available on many personal computers and other Internet access devices. Calls and SMS text messages may be sent over mobile data or Wi-Fi.
Quantum Internet Solutions Ltd. Provides VOIP Phone Systems for Home Starting At Just $20.00+GST per User per Month!
Call Quantum Internet Solutions Today To Find Out More!
Protocols
Voice over IP has been implemented in various ways using both proprietary protocols and protocols based on open standards. These protocols can be used by a VoIP phone, special-purpose software, a mobile application or integrated into a web page. VoIP protocols include:
- Session Initiation Protocol (SIP), connection management protocol developed by the IETF
- H.323, one of the first VoIP call signaling and control protocols that found widespread implementation. Since the development of newer, less complex protocols such as MGCP and SIP, H.323 deployments are increasingly limited to carrying existing long-haul network traffic.
- Media Gateway Control Protocol (MGCP), connection management for media gateways
- H.248, control protocol for media gateways across a converged internetwork consisting of the traditional public switched telephone network (PSTN) and modern packet networks
- Real-time Transport Protocol (RTP), transport protocol for real-time audio and video data
- Real-time Transport Control Protocol (RTCP), sister protocol for RTP providing stream statistics and status information
- Secure Real-time Transport Protocol (SRTP), encrypted version of RTP
- Session Description Protocol (SDP), file format used principally by SIP to describe VoIP connections
- Inter-Asterisk eXchange (IAX), protocol used between VoIP servers
- Extensible Messaging and Presence Protocol (XMPP), instant messaging, presence information, and contact list maintenance
- Jingle, adds peer-to-peer session control to XMPP
- Skype protocol, proprietary Internet telephony protocol suite based on peer-to-peer architecture
Quality Of Service
Communication on the IP network is perceived as less reliable in contrast to the circuit-switched public telephone network because it does not provide a network-based mechanism to ensure that data packets are not lost, and are delivered in sequential order. It is a best-effort network without fundamental Quality of Service (QoS) guarantees. Voice, and all other data, travels in packets over IP networks with fixed maximum capacity. This system may be more prone to congestion and DoS attacks than traditional circuit switched systems; a circuit switched system of insufficient capacity will refuse new connections while carrying the remainder without impairment, while the quality of real-time data such as telephone conversations on packet-switched networks degrades dramatically. Therefore, VoIP implementations may face problems with latency, packet loss, and jitter.
By default, network routers handle traffic on a first-come, first-served basis. Fixed delays cannot be controlled as they are caused by the physical distance the packets travel. They are especially problematic when satellite circuits are involved because of the long distance to a geostationary satellite and back; delays of 400–600 ms are typical. Latency can be minimized by marking voice packets as being delay-sensitive with QoS methods such as DiffServ.
Network routers on high volume traffic links may introduce latency that exceeds permissible thresholds for VoIP. When the load on a link grows so quickly that its switches experience queue overflows, congestion results and data packets are lost. This signals a transport protocol like TCP to reduce its transmission rate to alleviate the congestion. But VoIP usually uses UDP not TCP because recovering from congestion through retransmission usually entails too much latency. So QoS mechanisms can avoid the undesirable loss of VoIP packets by immediately transmitting them ahead of any queued bulk traffic on the same link, even when that bulk traffic queue is overflowing.
VoIP endpoints usually have to wait for completion of transmission of previous packets before new data may be sent. Although it is possible to preempt (abort) a less important packet in mid-transmission, this is not commonly done, especially on high-speed links where transmission times are short even for maximum-sized packets. An alternative to preemption on slower links, such as dialup and digital subscriber line (DSL), is to reduce the maximum transmission time by reducing the maximum transmission unit. But every packet must contain protocol headers, so this increases relative header overhead on every link traversed, not just the bottleneck (usually Internet access) link.
The receiver must resequence IP packets that arrive out of order and recover gracefully when packets arrive too late or not at all. Jitter results from the rapid and random (i.e. unpredictable) changes in queue lengths along a given Internet path due to competition from other users for the same transmission links. VoIP receivers counter jitter by storing incoming packets briefly in a "de-jitter" or "playout" buffer, deliberately increasing latency to improve the chance that each packet will be on hand when it is time for the voice engine to play it. The added delay is thus a compromise between excessive latency and excessive dropout, i.e. momentary audio interruptions.
Although jitter is a random variable, it is the sum of several other random variables which are at least somewhat independent: the individual queuing delays of the routers along the Internet path in question. According to the central limit theorem, jitter can be modeled as a gaussian random variable. This suggests continually estimating the mean delay and its standard deviation and setting the playout delay so that only packets delayed more than several standard deviations above the mean will arrive too late to be useful. In practice, the variance in latency of many Internet paths is dominated by a small number (often one) of relatively slow and congested "bottleneck" links. Most Internet backbone links are now so fast (e.g. 10 Gbit/s) that their delays are dominated by the transmission medium (e.g. optical fiber) and the routers driving them do not have enough buffering for queuing delays to be significant.
It has been suggested to rely on the packetized nature of media in VoIP communications and transmit the stream of packets from the source phone to the destination phone simultaneously across different routes (multi-path routing). In such a way, temporary failures have less impact on the communication quality. In capillary routing at the packet level Fountain codes or particularly raptor codes it is recommended for transmitting extra redundant packets making the communication more reliable.
A number of protocols have been defined to support the reporting of quality of service (QoS) and quality of experience (QoE) for VoIP calls. These include RTCP Extended Report (RFC 3611), SIP RTCP Summary Reports, H.460.9 Annex B (for H.323), H.248.30 and MGCP extensions. The RFC 3611 VoIP Metrics block is generated by an IP phone or gateway during a live call and contains information on packet loss rate, packet discard rate (because of jitter), packet loss/discard burst metrics (burst length/density, gap length/density), network delay, end system delay, signal / noise / echo level, Mean Opinion Scores (MOS) and R factors and configuration information related to the jitter buffer.
RFC 3611 VoIP metrics reports are exchanged between IP endpoints on an occasional basis during a call, and an end of call message sent via SIP RTCP Summary Report or one of the other signaling protocol extensions. RFC 3611 VoIP metrics reports are intended to support real time feedback related to QoS problems, the exchange of information between the endpoints for improved call quality calculation and a variety of other applications.
Rural areas in particular are greatly hindered in their ability to choose a VoIP system over PBX. This is generally down to the poor access to superfast broadband in rural country areas. With the release of 4G data, there is a potential for corporate users based outside of populated areas to switch their internet connection to 4G data, which is comparatively as fast as a regular superfast broadband connection. This greatly enhances the overall quality and user experience of a VoIP system in these areas.
Number portability
Local number portability (LNP) and Mobile number portability (MNP) also impact VoIP business. In November 2007, the Federal Communications Commission in the United States released an order extending number portability obligations to interconnected VoIP providers and carriers that support VoIP providers. Number portability is a service that allows a subscriber to select a new telephone carrier without requiring a new number to be issued. Typically, it is the responsibility of the former carrier to "map" the old number to the undisclosed number assigned by the new carrier. This is achieved by maintaining a database of numbers. A dialed number is initially received by the original carrier and quickly rerouted to the new carrier. Multiple porting references must be maintained even if the subscriber returns to the original carrier. The FCC mandates carrier compliance with these consumer-protection stipulations.
A voice call originating in the VoIP environment also faces challenges to reach its destination if the number is routed to a mobile phone number on a traditional mobile carrier. VoIP has been identified in the past as a Least Cost Routing (LCR) system, which is based on checking the destination of each telephone call as it is made, and then sending the call via the network that will cost the customer the least. This rating is subject to some debate given the complexity of call routing created by number portability. With GSM number portability now in place, LCR providers can no longer rely on using the network root prefix to determine how to route a call. Instead, they must now determine the actual network of every number before routing the call.
Therefore, VoIP solutions also need to handle MNP when routing a voice call. In countries without a central database, like the UK, it might be necessary to query the GSM network about which home network a mobile phone number belongs to. As the popularity of VoIP increases in the enterprise markets because of least cost routing options, it needs to provide a certain level of reliability when handling calls.
MNP checks are important to assure that this quality of service is met. Handling MNP lookups before routing a call provides some assurance that the voice call will actually work.
Emergency Calls
A telephone connected to a land line has a direct relationship between a telephone number and a physical location, which is maintained by the telephone company and available to emergency responders via the national emergency response service centers in form of emergency subscriber lists. When an emergency call is received by a center the location is automatically determined from its databases and displayed on the operator console.
In IP telephony, no such direct link between location and communications end point exists. Even a provider having hardware infrastructure, such as a DSL provider, may know only the approximate location of the device, based on the IP address allocated to the network router and the known service address. Some ISPs do not track the automatic assignment of IP addresses to customer equipment.
IP communication provides for device mobility. For example, a residential broadband connection may be used as a link to a virtual private network of a corporate entity, in which case the IP address being used for customer communications may belong to the enterprise, not being the IP address of the residential ISP. Such off-premises extensions may appear as part of an upstream IP PBX. On mobile devices, e.g., a 3G handset or USB wireless broadband adapter, the IP address has no relationship with any physical location known to the telephony service provider, since a mobile user could be anywhere in a region with network coverage, even roaming via another cellular company.
At the VoIP level, a phone or gateway may identify itself with a Session Initiation Protocol (SIP) registrar by its account credentials. In such cases, the Internet telephony service provider (ITSP) knows only that a particular user's equipment is active. Service providers often provide emergency response services by agreement with the user who registers a physical location and agrees that emergency services are provided to that address only if an emergency number is called from the IP device.
Such emergency services are provided by VoIP vendors in the United States by a system called Enhanced 911 (E911), based on the Wireless Communications and Public Safety Act of 1999. The VoIP E911 emergency-calling system associates a physical address with the calling party's telephone number. All VoIP providers that provide access to the public switched telephone network are required to implement E911, a service for which the subscriber may be charged. "VoIP providers may not allow customers to "opt-out" of 911 service."
The VoIP E911 system is based on a static table lookup. Unlike in cellular phones, where the location of an E911 call can be traced using assisted GPS or other methods, the VoIP E911 information is accurate only if subscribers, who have the legal responsibility, keep their emergency address information current.